Tessellations of random maps of arbitrary genus (Mosäıques sur des cartes aléatoires en genre arbitraire)
نویسنده
چکیده
We investigate Voronoi-like tessellations of bipartite quadrangulations on surfaces of arbitrary genus, by using a natural generalization of a bijection of Marcus and Schaeffer allowing one to encode such structures by labeled maps with a fixed number of faces. We investigate the scaling limits of the latter. Applications include asymptotic enumeration results for quadrangulations, and typical metric properties of randomly sampled quadrangulations. In particular, we show that scaling limits of these random quadrangulations are such that almost every pair of points are linked by a unique geodesic. Nous examinons les propriétés de mosäıques de type Voronoi sur des quadrangulations biparties de genre arbitraire. Ceci est rendu possible par une généralisation naturelle d’une bijection de Marcus et Schaeffer, permettant de décrire ces mosäıques par des cartes étiquetées avec un nombre fixé de faces, dont nous déterminons les limites d’échelle. Parmi les applications de ces résultats, figurent le comptage asymptotique des quadrangulations, ainsi que des propriétés métriques typiques de quadrangulations choisies au hasard. En particulier, nous montrons que les limites d’échelles de quadrangulations aléatoires sont telles que presque toute paire de points est liée par un unique chemin géodésique.
منابع مشابه
Énumération des cartes pointées sur une surface orientable de genre quelconque en fonction des nombres de sommets et de faces
Dans cet article, nous explicitons la forme ge ne rale des se ries ge ne ratrices des cartes pointe es sur une surface orientable, e nume re es en fonction des nombres de sommets et de faces. Toutes ces se ries ge ne ratrices sont des se ries rationnelles d'un unique syste me parame trique des variables de nombrant les sommets et les faces. Nous explicitons ces se ries dans le cas des cartes po...
متن کاملA unified bijective method for maps: application to two classes with boundaries
Based on a construction of the first author, we present a general bijection between certain decorated plane trees and certain orientations of planar maps with no counterclockwise circuit. Many natural classes of maps (e.g. Eulerian maps, simple triangulations,...) are in bijection with a subset of these orientations, and our construction restricts in a simple way on the subset. This gives a gen...
متن کاملBijective Enumeration of Bicolored Maps of Given Vertex Degree Distribution
We derive a new formula for the number of factorizations of a full cycle into an ordered product of two permutations of given cycle types. For the first time, a purely combinatorial argument involving a bijective description of bicolored maps of specified vertex degree distribution is used. All the previous results in the field rely either partially or totally on a character theoretic approach....
متن کاملGeneralized Dyck equations and multilabel trees
New topological operations are introduced in order to recover the generalized Dyck equations presented by D. Arquès et al. in another way for the generating functions of maps and colored maps, by decomposing maps topologically and bijectively. By repeatedly applying the operations which made it possible to reveal the generalized Dyck equations for the successive transformed maps, oneto-one corr...
متن کاملNew bijective links on planar maps
This article describes new bijective links on planar maps, which are of incremental complexity and present original features. The first two bijections Φ1,2 are correspondences on oriented planar maps. They can be considered as variations on the classical edge-poset construction for bipolar orientations on graphs, suitably adapted so as to operate only on the embeddings in a simple local way. In...
متن کامل